

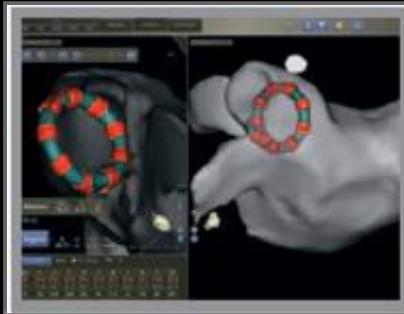
nMARQ Kateteri ile Ablasyon

Prof. Dr. Ahmet Duran Demir
Acıbadem Üniversitesi
Tıp Fakültesi

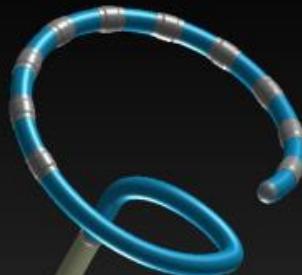
nMARQ Sistemi

Irrigasyon

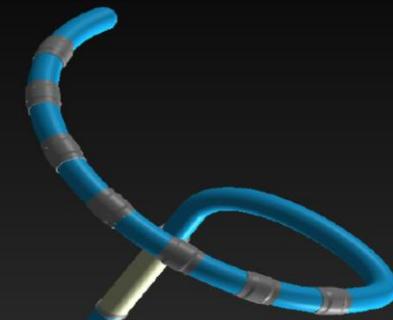
Navigate



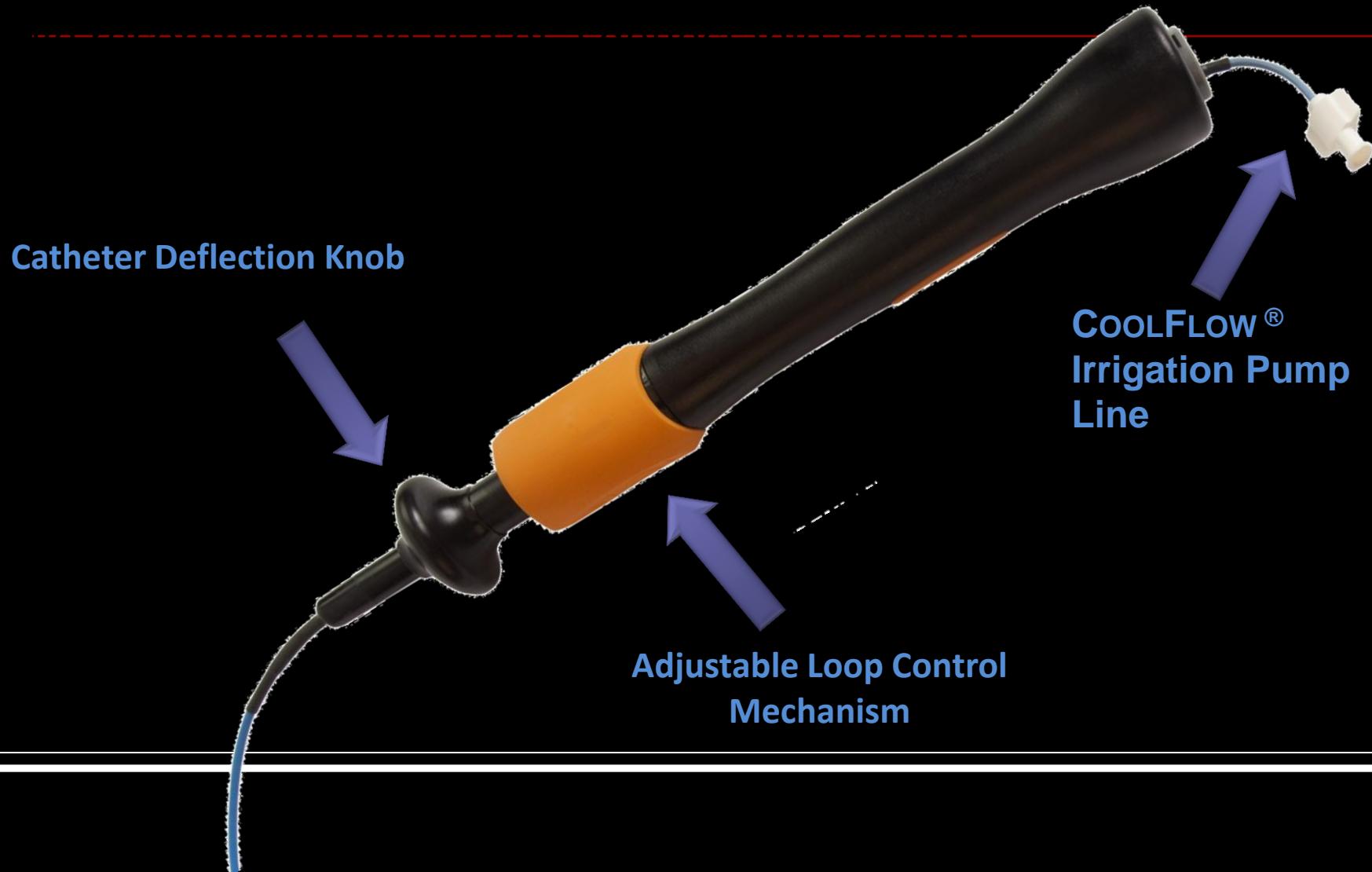
Çoklu ablasyon


CATHETERS

**CARTO® 3 SYSTEM
INTERFACE**


**MULTI-CHANNEL
GENERATOR**

nMARQ Kateter


Loop size 8.4 Fr

Shaft size 7.6 Fr

nMARQ™ Circular Catheter

nMARQ™ Crescent Catheter

nMARQ™ Multi-Channel RF Sistem

- **Unipolar and Bipolar ablasyon**
 - Unipolar Max power 25 W
 - Bi polar Max power 15 W
- **Her bir kanal birbirinden bağımsızdır.**
Birbiriyle etkileşmez.
- **Her bir elektrod**
 - Diğerlerinden bağımsız kapatılabilir.
 - Güç (Power) birbirinden bağımsız olarak ayarlanabilir.
- **Isı ve impedans değerleri her bir elektrod için ayrı ayrı ölçülebilir.**

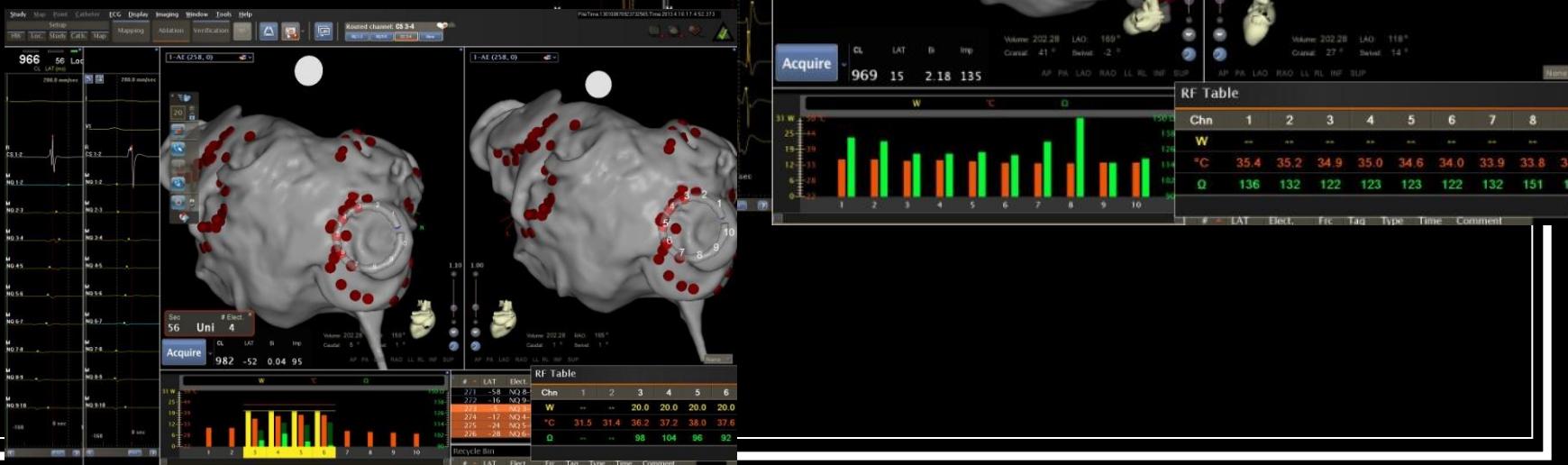
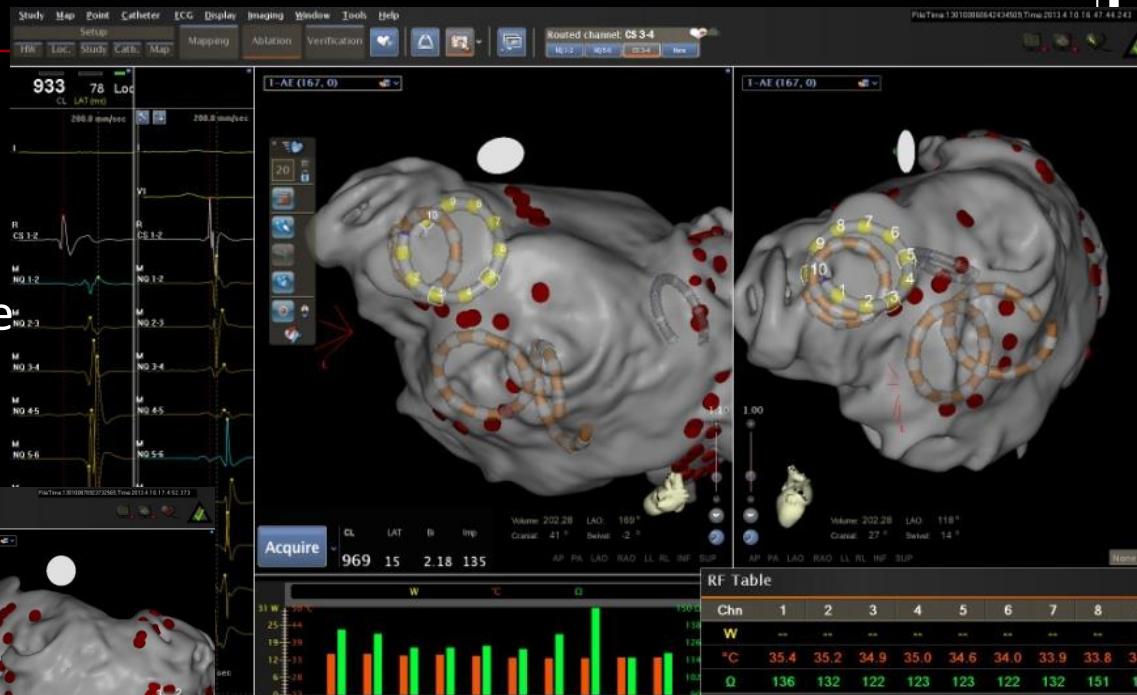
FLUSHING Flow Rate	60mL/min	
MAPPING Flow Rate	4mL/min	
	UNIPOLAR MODE	BIPOLAR MODE
RF POWER Setting	≤25W (for one ring electrode)	≤15W (for one ring electrode)
Application Time	≤60 sec	≤60 sec
Irrigation Flow Rate During RF Application	60 ml/min	60 ml/min
Temperature Monitoring	≤47°C*	≤47°C*
Irrigation Flow Rate During RF Application	42 ml/min	42 ml/min
Temperature Monitoring	≤47°C*	≤47°C*

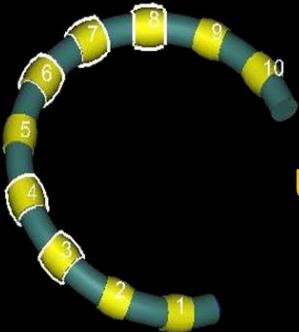
* The temperature displayed on the RF generator does not represent tissue temperature or electrode tissue interface temperature.

* RF, power, ısı ve uygulama zaman değerleri maksimum değerlerdir. Bu değerler hastanın durumu ve kliniğe göre değiştirilebilir.

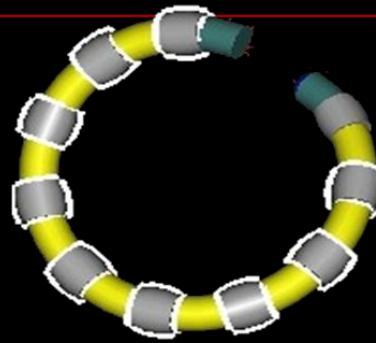
nMARQ™ Circular Catheter

nMARQ™ Crescent Catheter

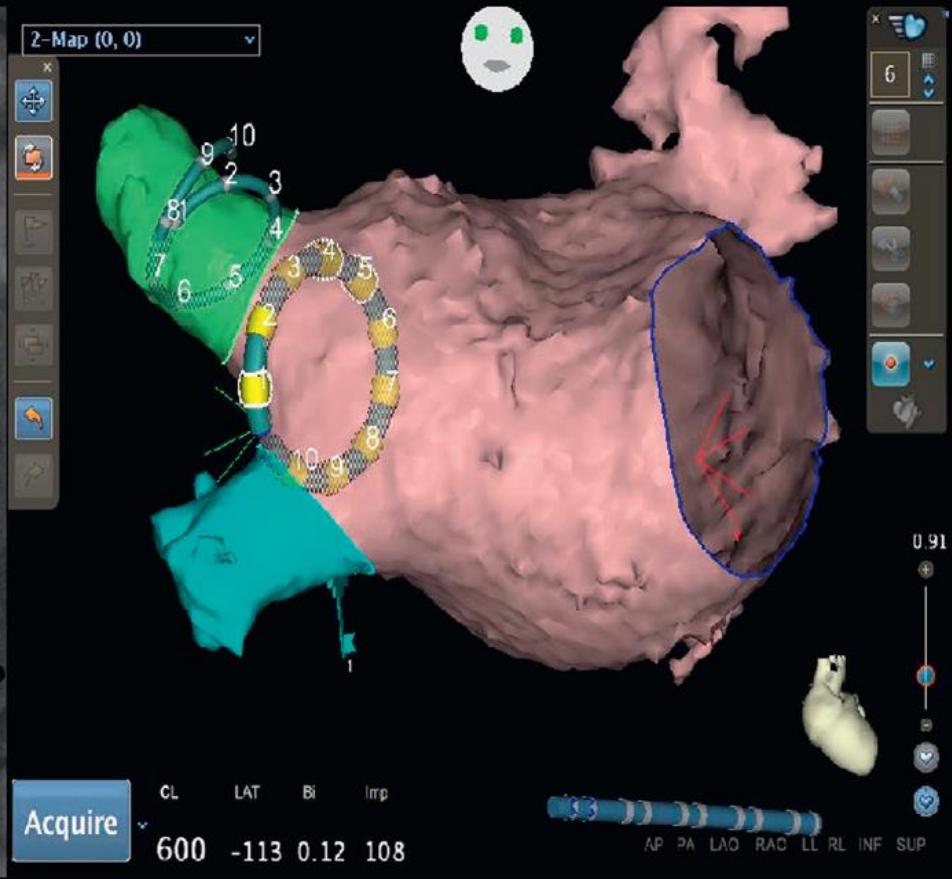
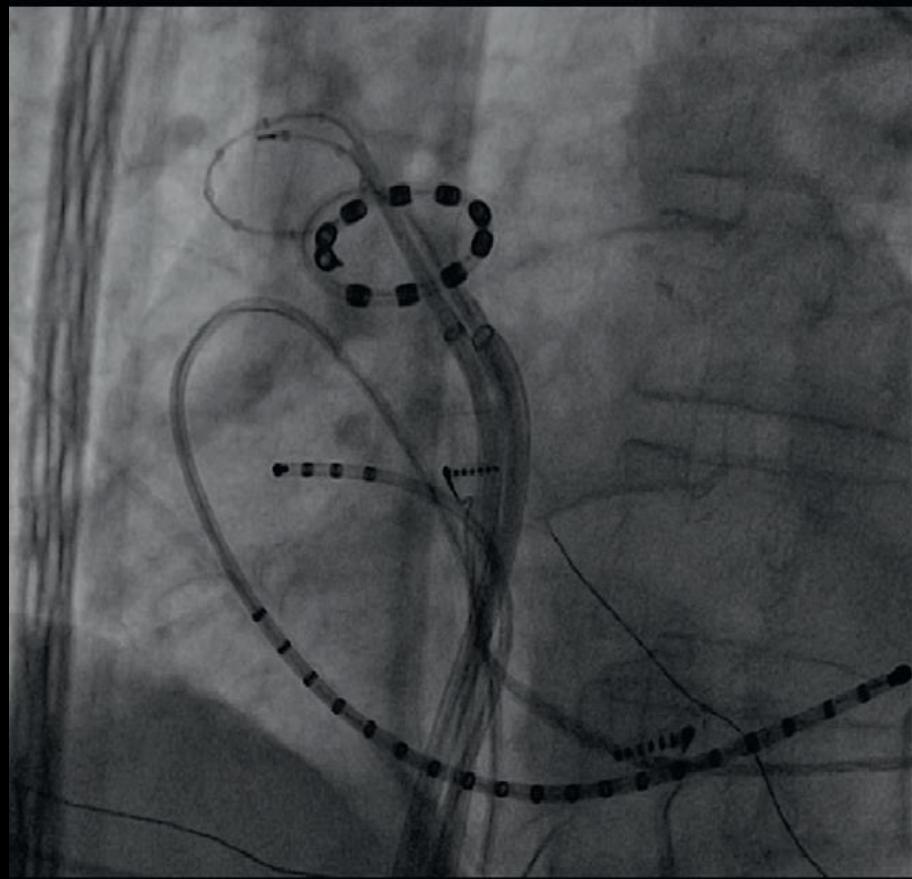


nMARQ kateteri ile


- CARTO 3 içim hızlı elektro-anatomik haritalama için bilgi toplanabilir
- Unipolar yada bipolar sinyaller görüntülenebilir.
- Her bir elektroddan pace edilebilir.
- Her bir elektroddan ablasyon yapılabilir.
- RF verilen noktalar işaretlenebilir.
- TISSUECONNECT teknolojisi kullanılarak iyi kontakt yapmayan elektrodlar kapatılabilir.

nMARQ & CARTO 3 Sistem


- Kateterin doğru bir şekilde görülmesi
- RF verilerinin doğru bir şekilde haritada gösterilmesi

TISSUECONNECT Teknoloji

Unipolar

Bipolar

- Unipolar – Her bir elektrod gösterilir.
- Bipolar – Elektrod çifti gösterilir.
- Kontakt problemi olan elektrodlar ablasyon başlamadan deaktive edilirler

Published [Viewing options](#)

Summary 100 per page Sort by Most Relevant

Results for: 102

1. [Ablation-related thrombosis and associated embolic risks of common and pulmonary veins using a novel multielectrode irrigated ablation catheter](#)

1. Chikudate A, Chikudate F, Kurokawa M, Takagi F, Gotohara F, Gotohara S, Uengi T, Gotohara M. *Am J Physiol Heart Circ Physiol* 2004;286:H1437-H1443. <https://doi.org/10.1152/ajpheart.00323.2004>. PMID:15130000

2. [Fluoroscopy-free PVAT with iMRA/RCO using TM technique in a patient with a PFO](#)

2. Saitoh M, Kohno M, Saitoh T, Kohno T. *Am J Physiol Heart Circ Physiol* 2004;286:H1444-H1448. <https://doi.org/10.1152/ajpheart.00324.2004>. PMID:15130001

3. [Pneumothorax: a potential complication of the iMRA/RCO ablation techniques](#)

3. Annaud J, Deneire M. *Am J Physiol Heart Circ Physiol* 2004;286:H1449-H1452. <https://doi.org/10.1152/ajpheart.00325.2004>. PMID:15130002

4. [Modified energy settings and mandatory no-rush time during the irrigated multielectrode frequency ablation catheter for pulmonary vein isolation](#)

4. Polley A, Lin T, Gauthier A, Kleinloek M, Hwang S, Makkar R, Macrini S, Watanabe S, Wohlmut P, Cheung F, Kuck KH, Tsai PC. *Am J Physiol Heart Circ Physiol* 2004;286:H1453-H1458. <https://doi.org/10.1152/ajpheart.00326.2004>. PMID:15130003

5. [From catheter to catheter: a new approach to guidance with serial ablation](#)

5. Lepot P, Perrot A, Pellerin A, Khadermalouk M. *Am J Physiol Heart Circ Physiol* 2004;286:H1459-H1462. <https://doi.org/10.1152/ajpheart.00327.2004>. PMID:15130004

6. [Pulmonary vein isolation with a new multielectrode irrigated radiofrequency ablation catheter \(iMRA/RCO\): feasibility, safety, and circumferential activation with the use of a novel ablation catheter](#)

6. Saitoh M, Gotohara F, Uengi T, Chikudate F, Gotohara S, Gotohara M, Gotohara T, Gotohara C, Chikudate F, Gotohara F. *Am J Physiol Heart Circ Physiol* 2004;286:H1463-H1467. <https://doi.org/10.1152/ajpheart.00328.2004>. PMID:15130005

7. [Pulmonary vein isolation using a novel, passive, irrigated, nonradiofrequency ablation catheter \(iMRA/RCO\) without fluoroscopy](#)

7. Saitoh M, Oishi M, Uengi T, Chikudate F, Uengi T, Chikudate M, Gotohara F, Chikudate M, Saitoh M, Gotohara M, Gotohara T, Gotohara C, Gotohara M, Gotohara T. *Am J Physiol Heart Circ Physiol* 2004;286:H1468-H1472. <https://doi.org/10.1152/ajpheart.00329.2004>. PMID:15130006

8. [Circumferential ablation catheter: a novel component of a irrigated frequency ablation catheter](#)

8. Kato A, Nagayoshi S, Saitoh M, Saitoh M, Chikudate F. *Am J Physiol Heart Circ Physiol* 2004;286:H1473-H1476. <https://doi.org/10.1152/ajpheart.00330.2004>. PMID:15130007

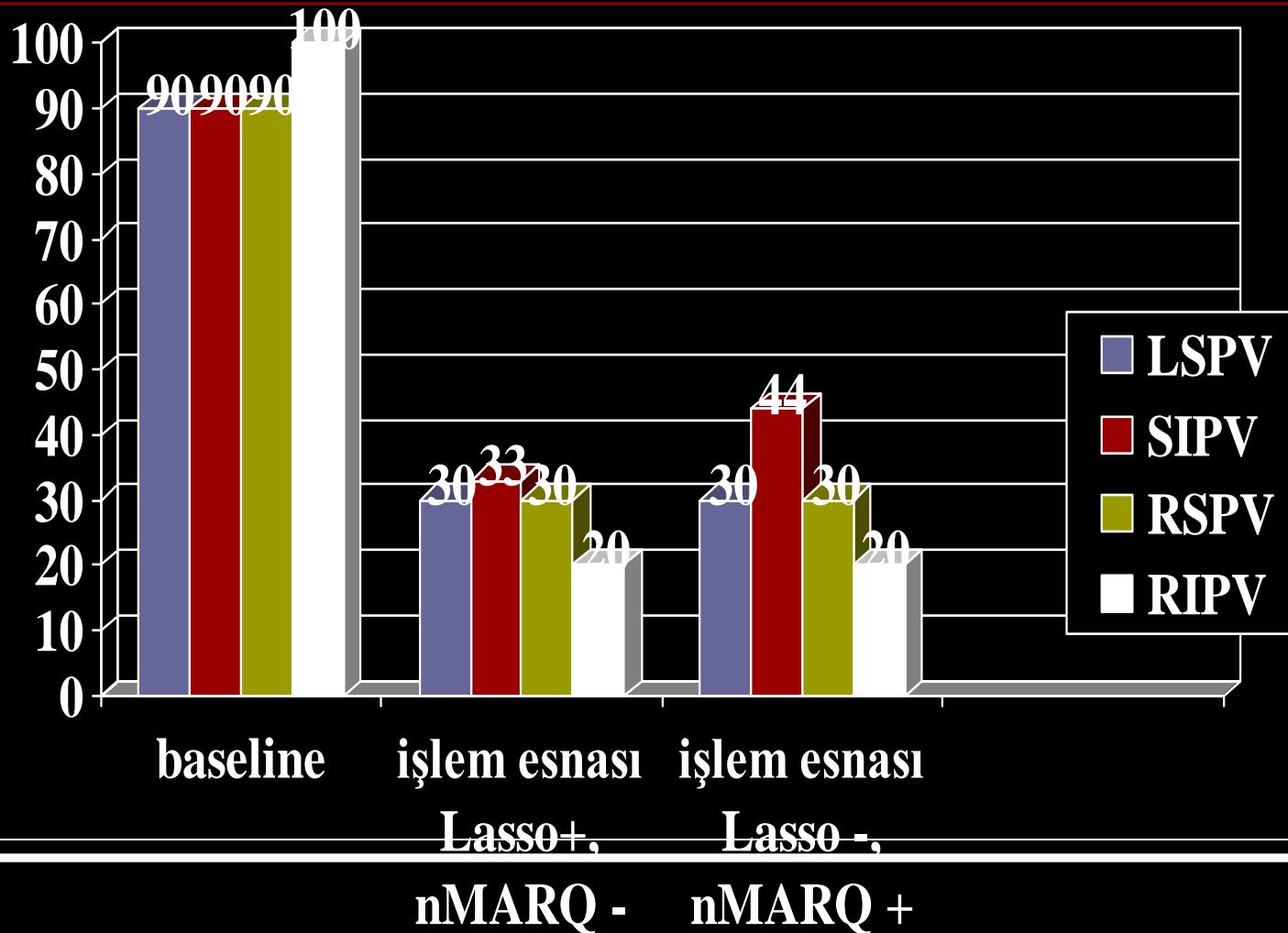
9. [Selective circumferential ablation of the common atrial fibrillation with the novel irrigated multielectrode irrigated iMRA/RCO ablation catheter: a simple, safe, and effective technique](#)

9. Polley A, Holman A, McHowat M, Saitoh M, Gotohara S, Watanabe S. *Am J Physiol Heart Circ Physiol* 2004;286:H1477-H1481. <https://doi.org/10.1152/ajpheart.00331.2004>. PMID:15130008

10. [Initial results of using a novel irrigated multielectrode irrigating and ablation catheter for pulmonary vein isolation](#)

10. Chikudate A, Kohno M, Saitoh M, Chikudate F, Gotohara S, Gotohara M, Makita M, Kato A, Nagayoshi S. *Am J Physiol Heart Circ Physiol* 2004;286:H1482-H1486. <https://doi.org/10.1152/ajpheart.00332.2004>. PMID:15130009

11. [Ablation without fluoroscopy using a novel multielectrode irrigated radiofrequency ablation catheter \(iMRA/RCO\)](#)


11. Tsoi J, Ng GK. *Am J Physiol Heart Circ Physiol* 2004;286:H1487-H1491. <https://doi.org/10.1152/ajpheart.00333.2004>. PMID:15130010


12. [Safety and efficacy of a novel multielectrode irrigated radiofrequency ablation catheter for pulmonary vein isolation](#)

12. Chikudate T, Gotohara S, Makita M, Chikudate F, Chikudate M, Kohno M, Kohno T, Kohno T. *Am J Physiol Heart Circ Physiol* 2004;286:H1492-H1496. <https://doi.org/10.1152/ajpheart.00334.2004>. PMID:15130011

nMARQ kateteri ile Lasso kateter kayıtlarının karşılaştırılması

Rosso ve ark. Heart Rhythm 2014;11:559-565

Pulmonary vein isolation using a circular, open irrigated mapping and ablation catheter (nMARQ): a report on feasibility and efficacy

Stephan Zellerhoff¹*, Matthew Daly¹, Han S. Lim¹, Arnaud Denis^{1,2}, Yuki Komatsu¹, Laurence Jesel^{1,2}, Nicolas Derval^{1,2}, Frédéric Sacher^{1,2}, Hubert Cochet^{1,2}, Sébastien Knecht^{1,2}, Sunthareth Yiem¹, Mélèze Hocini^{1,2}, Michel Haïssaguerre^{1,2} and Pierre Jaïs^{1,2}

¹Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Université Victor Segalen Bordeaux II, Avenue de Magellan, 33604 Bordeaux-Pessac, France; and ²INSERM U1045—L’Institut de Rythmologie et Modeling Cardiaque, Bordeaux, France

Received 30 December 2013; accepted after revision 25 April 2014; online publish-ahead-of-print 18 June 2014

Aims

Pulmonary vein isolation (PVI) is the mainstay of interventional treatment of paroxysmal atrial fibrillation (PAF). We report on the feasibility and efficacy of a novel, open-irrigated mapping and radiofrequency (RF) ablation catheter.

Methods and results

Thirty-nine consecutive patients (pts; age 60 ± 10 years, 8 females) suffering from drug-refractory PAF referred for PVI were included in this prospective study. Pulmonary vein isolation was performed with the use of a novel 10-pole circular, open-irrigated mapping and ablation catheter (nMARQ, Biosense Webster). Outcome parameters were the acute success rate in establishing complete PVI and the rate of sustained sinus rhythm (SR) during follow-up (FU). Ten patients underwent a repeat procedure for recurrent AF. Ninety-eight percent of the PVs could be acutely isolated using solely the nMARQ catheter by applying a mean total of 10.0 ± 4.6 min of RF energy. The mean total procedure duration was 86 ± 29 min, and the mean fluoroscopy time was 22.2 ± 6.5 min, respectively. Transient reconnection provoked by adenosine was observed in 10 of 24 patients, most frequently in the right superior PV. Cardiac tamponade related to transseptal puncture occurred in one patient. Reconnected PVs could be identified as a source of recurrent AF in 9 of 10 patients undergoing a repeat procedure. Single and multiple procedure success rates during a mean FU of 140 ± 75 days were 66 and 77%, respectively.

Conclusion

Irrigated multi-electrode RF ablation is fast and effective, providing a high rate of isolated PVs without the need of touch-up lesions. Success rates were comparable with other techniques with a low complication rate. Recurrences of AF were mainly due to recovered pulmonary vein/left atrium conduction.

Table 2 Procedural data

Procedure duration, mean \pm SD, min	86 \pm 29
Fluoroscopy duration, mean \pm SD, min	22.2 \pm 6.5
Total RF delivery duration (PVI), mean \pm SD, min	10.0 \pm 4.6
RF delivery duration per vein, mean \pm SD, s	
RSPV	217 \pm 212
RIPV	114 \pm 62
LSPV	152 \pm 97
LIPV	116 \pm 65

RF, radiofrequency; RSPV, right superior pulmonary vein; RIPV, right inferior pulmonary vein; LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein.

Initial results of using a novel irrigated multielectrode mapping and ablation catheter for pulmonary vein isolation

Dong-In Shin, MD, Kiriakos Kirmanoglou, MD, Christian Eickholt, MD, Jan Schmidt, MD, Lukas Clasen, MD, Britta Butzbach, MD, Tienush Rassaf, MD, Marc Merx, MD, Malte Kelm, MD, Christian Meyer, MD

From the Division of Cardiology, Pulmology and Vascular Medicine, University Hospital, Duesseldorf, Germany.

BACKGROUND Pulmonary vein isolation (PVI) as a cornerstone for catheter ablation of atrial fibrillation (AF) remains a complex and time-consuming procedure.

OBJECTIVE To assess feasibility, safety, and acute efficacy of a novel irrigated multielectrode ablation catheter guided by an electroanatomic mapping system for PVI in patients with paroxysmal AF.

METHODS Twenty-five consecutive patients (60 ± 10 years) with paroxysmal AF underwent PVI by using a novel decapolar mapping and ablation catheter (nMARQ catheter, Biosense Webster Inc, Diamond Bar, CA). Ablation was guided by electroanatomic mapping allowing radiofrequency (RF) energy delivery in the antral region of pulmonary veins (PVs) from 10 irrigated electrodes simultaneously. The day after ablation, cardiac magnetic resonance imaging was performed routinely in order to assess for potential acute PV stenosis.

RESULTS Overall, 97 of 97 (100%) targeted PVs could be isolated with a mean of 27 ± 11 RF applications and a mean total burning time of 15 ± 6 minutes per patient. The total procedure time from femoral vein access to catheter withdrawal was 110 ± 31 minutes, including a mean total fluoroscopy time of 23 ± 9 minutes. On average, 6 ± 3 RF impulses with a maximum of 25 W were applied

per vein. After a short learning curve, procedure, fluoroscopy, and total burning times decreased to 94 ± 16 , 16 ± 3 , and 9 ± 2 minutes, respectively ($P < .05$). Entrance and exit blocks could be verified by placing the ablation catheter into 90 of 97 (93%) PVs in 18 of 25 (72%) patients. No procedure-related complications were observed, especially no acute PV stenosis could be detected.

CONCLUSIONS The use of a novel irrigated multielectrode ablation system for PVI is feasible and safe, resulting in acute isolation of all targeted PVs with no complications and short procedure times. Sustainability of these initial results has to be confirmed in long-term efficacy and follow-up trials.

KEYWORDS Atrial fibrillation; Catheter ablation; Multielectrode ablation catheter

ABBREVIATIONS 3D = 3-dimensional; ACT = active clotting time; AF = atrial fibrillation; FAM = fast anatomic mapping; INR = international normalized ratio; MRI = magnetic resonance imaging; PV = pulmonary vein; PVAC = pulmonary vein ablation catheter; PVI = pulmonary vein isolation; RF = radiofrequency; RIPV = right inferior pulmonary vein

(Heart Rhythm 2014;11:375–383) © 2014 Heart Rhythm Society. All rights reserved.

25 HASTA ALINMIŞ. HEPSİNDE BAŞARILI PVI YAPILMIŞ.KOMPLİKASYON YOK. BURDADA İLK 10 VAKADAN SONRA 20 WATT 45 SN VERMİŞLER. 4 AYLIK TAKİPTE %80.9 ARİTMİ YOK.

Table 2 Procedural and ablation data

A: Procedural data	
Procedure time (min)	110 ± 31
Fluoroscopy time (min)	23 ± 9
Total burning time (min)	15 ± 6
Complications	—
Access site complications	—
Pericardial tamponade	—
TIA/stroke	—
PV stenosis	—
Phrenic nerve palsy	—
Atrioesophageal fistula	—
Death	—
B: Ablation data	
Procedures	25
Total PV	97
Common ostium	3
<u>Successful PV isolation with the nMARQ catheter</u>	<u>97 of 97 (100)</u>
Successful PV intubation with the nMARQ catheter	90 of 97 (93)
Mean number of RF applications—total	27 ± 11
Mean number of RF applications—LSPV	9 ± 5
Mean number of RF applications—LIPV	7 ± 5
Mean number of RF applications—RS PV	5 ± 2
Mean number of RF applications—RIPV	5 ± 2
Charring of the nMARQ electrode	3 of 25 (12)

Data are presented as mean ± SD and as n (%).

LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein; PV = pulmonary vein; RIPV = right inferior pulmonary vein; RF = radiofrequency; RS PV = right superior pulmonary vein; TIA = transient ischemic attack.

Initial results of using a novel irrigated multielectrode mapping and ablation catheter for pulmonary vein isolation

Dong-In Shin, MD, Kiriakos Kirmanoglou, MD, Christian Eickholt, MD, Jan Schmidt, MD, Lukas Clasen, MD, Britta Butzbach, MD, Tienush Rassaf, MD, Marc Merx, MD, Malte Kelm, MD, Christian Meyer, MD

Table 4 Comparison of procedural data in different ablation technologies used for PVI in treatment of paroxysmal atrial fibrillation

Technology	Acute success (%)	Procedure time (min)	Fluoroscopy time (min)	n
Conventional RF ablation ²	97.6	165	24	2870
Cryoballoon ablation ²	97.5	160	34	905
Visually guided laserablation ³	98.8	200	31	200
PVAC ¹⁵	100	133	30	89
nMARQ catheter	100	110	23	25

Data are presented as mean values.

PVAC = pulmonary vein ablation catheter; PVI = pulmonary vein isolation; RF = radiofrequency.

Acute Safety and Efficacy of a Novel Multipolar Irrigated Radiofrequency Ablation Catheter for Pulmonary Vein Isolation

THOMAS DENEKE, M.D.,*† ANJA SCHADE, M.D.,* PATRICK MÜLLER, M.D.,†
RAINER SCHMITT, M.D.,‡ GEORGIOS CHRISTOPOULOS, M.D.,‡ JOACHIM KRUG, M.D.,*
GEZA SZÖLLÖSI, M.D.,* ANDREAS MÜGGE, M.D.,* SEBASTIAN KERBER, M.D.,*
and KARIN NENTWICH, M.D.*

From the *Heart-Center Bad Neustadt, Clinic for Invasive Electrophysiology, Bad Neustadt, Germany; †Ruhr-University Bochum, Bochum, Germany; and ‡Department of Radiology, Heart and Vascular Clinic Bad Neustadt, Bad Neustadt, Germany

Acute Safety and Efficacy of the Novel nMARQ™ Catheter. *Introduction:* “Single shot” ablation devices to treat symptomatic atrial fibrillation have been engineered over the last years. Safety and efficacy also includes subclinical complications only detected with esophageal endoscopy or cerebral MRI in asymptomatic patients. We studied the acute efficacy and safety profile of a novel multipolar irrigated RF ablation catheter (nMARQ™).

Methods and Results: Forty-three patients underwent pulmonary vein isolation (PVI) using the novel ablation device. Patient baseline and procedural characteristics were documented. Efficacy of PVI was identified using only the nMARQ™ catheter. All patients underwent postablation endoscopic evaluation of the esophagus to document thermal damage and cerebral MRI (diffusion weight imaging, attenuated diffusion coefficient-map) to document incidence and number of silent cerebral lesions (SCL). Effective PVI was achieved in 98% of targeted PVs in a mean procedure time of 133 minutes. A mean of 4.8, 60-second RF applications, per PV was needed for effective PVI. No clinical procedure-associated complications were noted. Esophageal temperature increase >40.5 °C was noted in 22 (51%) patients and 14 of these had thermal esophageal lesions on endoscopic evaluation. A total of 26 SCLs were noted in 14 patients (33%; 1.9/patient; mean diameter of 2.3 mm, 88% of lesions were ≤ 3 mm).

Conclusions: PVI using the novel irrigated RF multipolar ablation device (nMARQ™) appears to be acutely effective. No clinical complications were identified. A high incidence of SCL (33%) and thermal esophageal lesions (33%) bears caution and further studies on long-term efficacy and safety are needed. (*J Cardiovasc Electrophysiol*, Vol. 25, pp. 339-345, April 2014)

TABLE 1
Baseline, Procedural and Acute Outcome of Patients

Total Number of Patients	N = 43	Range
Age (years)	64 (12)	51–78
Ejection fraction (%)	62 (9)	45–70
Paroxysmal	28 (65%)	
Female	17 (40%)	
Left atrial dimensions (mm)	44 (5)	35–55
Ablation on OAC (INR > 2.0)	14 (33%)	
Ablation on NOACs	15 (34%)	
Ablation under bridging	14 (33%)	
INR at day of procedure in OAC patients	2.2 (0.3)	2.0–2.8
Procedure duration (minutes)	133 (41)	90–210
Fluoro time (minutes)	20 (6)	8–37
RF duration (minutes)	19 (7)	7–37
Isol PVs	160 (98%)	
Mean RF (minutes)/Isol PV	4.8 (2)	2.5–9.5
Minimum ACT (seconds)	305 (51)	229–418
Mean ACT (seconds)	334 (78)	304–540
Number of Eso-T-increase >40.5 °C	22 (51%)	
Mean max. Eso temp (°C)	41.6 (0.8)	41.0–43.6
Endoscopic Eso lesions (%)	14 (33%)	
SCL-rate	14 (33%)	
Mean SCL/Pat	1.9	1–8
Mean SCL size (mm)	2.3 (2.0)	1–9

no. = number; ACT = activated clotting time; Isol = isolated; SCL = silent cerebral lesions; Eso = esophageal.

PVI için kullanılan çeşitli yöntemlerdeki komp oranları

Özefajial lezyon (%)

- nMARQ 33
- Basit irrigasyon kat 11
- Cryo-balon 17
- Phased RF (PVAC) 8

Sessiz serebral lezyon

- nMARQ 33
- Basit irrigasyon kat 24
- Laser balon 24
- Cryo-balon 21
- Phased RF (PVAC) 37

Pulmonary Vein Isolation with a New Multipolar Irrigated Radiofrequency Ablation Catheter (nMARQTM): Feasibility, Acute and Short-Term Efficacy, Safety, and Impact on Postablation Silent Cerebral Ischemia

MARCO SCAGLIONE, M.D.,* DOMENICO CAPONI, M.D.,* MATTEO ANSELMINO, M.D.,
Ph.D.,† FRANCESCA DI CLEMENTE, M.D.,* ALESSANDRO BLANDINO, M.D.,†
FEDERICO FERRARIS, M.D.,† PAOLO DI DONNA, M.D.,* ELISA EBRILLE, M.D.,†
FRANCK HALIMI, M.D.,‡ JEAN F. LECLERCQ, M.D.,‡ COSTANZA IUNCO, M.D.,§
CARLOEUGENIO VAUDAGNA, M.D.,§ FEDERICO CESARANI, M.D.,§ and
FIORENZO GAITA, M.D.†

From the *Cardiology Division, Cardinal Guglielmo Massaia Hospital, Asti, Italy; †Division of Cardiology, Department of Medical Sciences, University of Turin, Italy; ‡Department of Rythmology, CMC Parly II Le Chesnay, Le Chesnay, France; and §Division of Radiology, Cardinal Massaia Hospital, Asti, Italy

PVI with nMARQTM. *Background:* Simultaneous multipolar ablation catheters have been proposed to simplify pulmonary vein isolation (PVI) in paroxysmal atrial fibrillation (AF). Recently, a new multipolar irrigated radiofrequency (RF) ablation catheter (nMARQTM, Biosense Webster Inc., Diamond Bar, CA, USA) combining both 3-dimensional electroanatomic mapping and multipolar open-irrigated ablation capability has been developed. Aim of our study was to assess feasibility, acute and short-term success and safety of PVI by the use of this new technology with particular regard to the incidence of postablation silent cerebral ischemia (SCI).

Methods and Results: Twenty-five patients (76% males; age 57 ± 13 years) with paroxysmal AF underwent PVI using the nMARQTM catheter. PVI, confirmed by Lasso catheter mapping, was achieved in 100 out of 102 pulmonary veins (98%) identified, and final PVI was obtained in 24 out of 25 (96%) patients. The overall concordance between Lasso and nMARQTM signals in demonstrating PVI was 78%. No major procedural complications occurred and no patient suffered SCI, on the basis of cerebral magnetic resonance imaging performed before and after the procedure. Following a 6-month follow-up, 17/25 (68%) patients remained free from AF without antiarrhythmic drugs.

Conclusions: In our preliminary experience, PVI with nMARQTM catheter appears to be feasible and safe, without incidence of SCI. Long-term clinical efficacy has to be evaluated in further studies. (*J Cardiovasc Electrophysiol*, Vol. 25, pp. 1299-1305, December 2014)

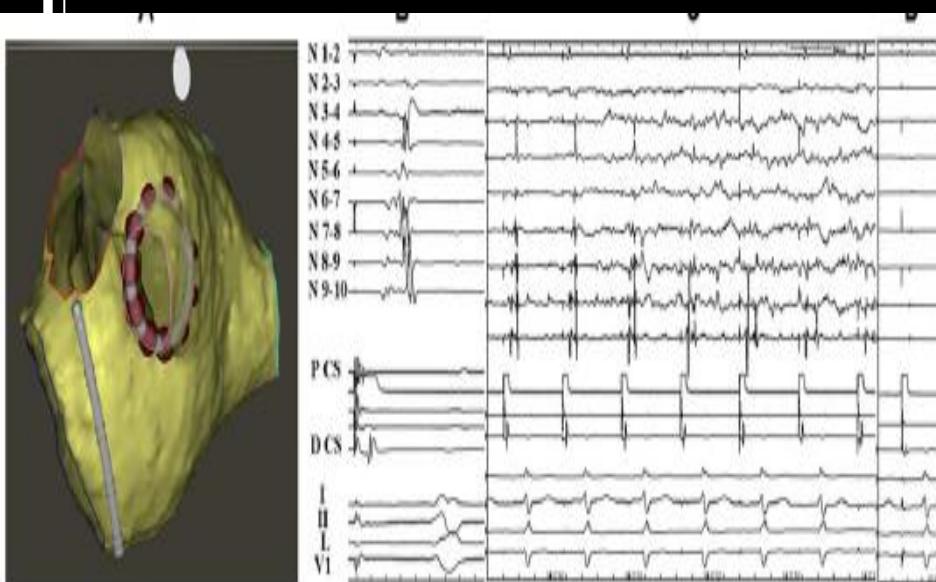
25 HASTA ALINMIŞ. HASTALARIN %96'sında PVI BAŞARILMIŞ. 20 W 45 DERECE, 40 SN VERİLMİŞ.

POSTERİYOR DUVARA İSE 18 W VERİLMİŞ.

Pulmonary Vein Isolation with a New Multipolar Irrigated Radiofrequency Ablation Catheter (nMARQTM): Feasibility, Acute and Short-Term Efficacy, Safety, and Impact on Postablation Silent Cerebral Ischemia

MARCO SCAGLIONE, M.D.,* DOMENICO CAPONI, M.D.,* MATTEO ANSELMINO, M.D., Ph.D.,† FRANCESCA DI CLEMENTE, M.D.,* ALESSANDRO BLANDINO, M.D.,† FEDERICO FERRARIS, M.D.,† PAOLO DI DONNA, M.D.,* ELISA EBRILLE, M.D.,† FRANCK HALIMI, M.D.,‡ JEAN F. LECLERCQ, M.D.,‡ COSTANZA IUNCO, M.D.,§ CARLOEUGENIO VAUDAGNA, M.D.,§ FEDERICO CESARANI, M.D.,§ and FIORENZO GAITA, M.D.†

TABLE 2
Procedural Variables

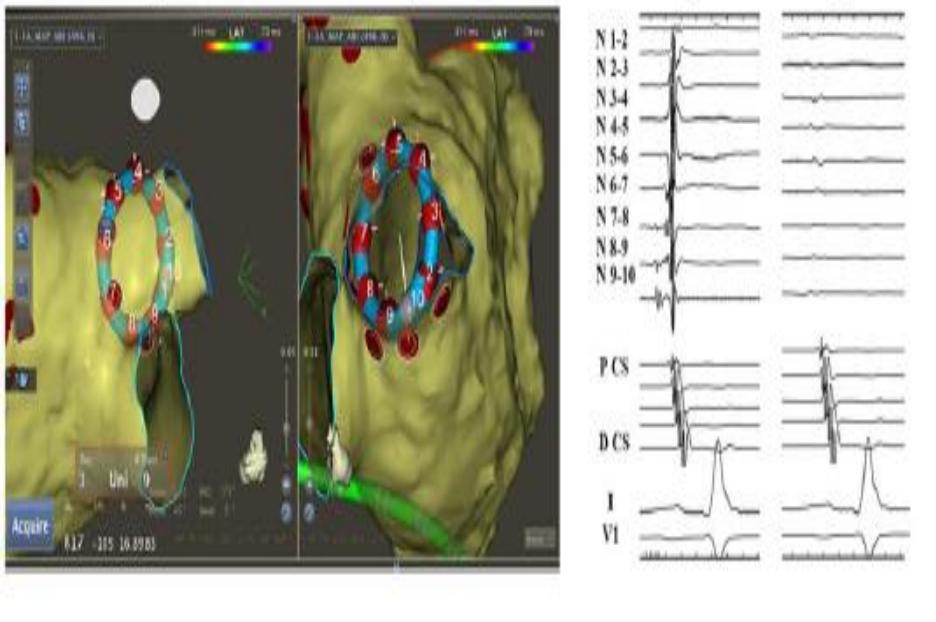

Variables	
Total procedural time (minutes)	131 ± 49
Total fluoro time (minutes)	1.8 ± 2
Catheter placement time (minutes)	29 ± 16
Fluoro time during catheter placement (minutes)	1.5 ± 1.8
Time of LA mapping (minutes)	11 ± 5
Fluoro time during LA mapping (minutes)	0.2 ± 0.3
Mean RF time (minutes)	14.9 ± 3.7
Fluoro time during RF (seconds)	2 ± 9
Mean ACT (seconds)	372 ± 40
Irrigation volume (mL)	1603 ± 433

ACT = activated clotting time; LA = left atrium; RF = radiofrequency.

- 25 hasta
- PV'lerin %98'i isole edilmiş.
- Lasso ve nMARQ korelasyonu %78
- Majör prosedür ile ilgili komplikasyon %0
- MR ile değerlendirilen sessiz serebral infarktüs yok
- 6 aylık takipte %68 hastada aritmi saptanmadı

Deneke'nin çalışmasına göre sessiz serebral iskemi daha az olmasının sebepleri

- Total RF süresi daha az (19 dk'a 14.95 dk) (her seferde en fazla 40 sn)
- Sheth'in kateter yerleşiminden sonra RA'a çekilmesi
- Proksimal ve distal elektrod overlap yaptığında sadece tek elektroddan RF verme
- ACT değerini işlem sırasında daha yüksek değerde tutma (334'e 372)



E

F

G

H

Acquire

8.17 - 015 10.8983

Modified energy settings are mandatory to minimize oesophageal injury using the novel multipolar irrigated radiofrequency ablation catheter for pulmonary vein isolation

Andreas Rillig^{1*}, Tina Lin¹, Andre Burchard², Masashi Kamioka¹, Christian Heeger¹, Hisaki Makimoto¹, Andreas Metzner¹, Erik Wissner¹, Peter Wohlmuth³, Feifan Ouyang¹, Karl-Heinz Kuck¹, and Roland Richard Tilz¹

¹Department of Cardiology, Asklepios Klinik St. Georg, Lohmühlenstr. 5, Hamburg, Germany; ²Department of Gastroenterology, Asklepios Klinik St. Georg, Hamburg, Germany; and ³Asklepios Proresearch, Hamburg, Germany

Received 3 July 2014; accepted after revision 25 August 2014; online publish-ahead-of-print 23 October 2014

Aims

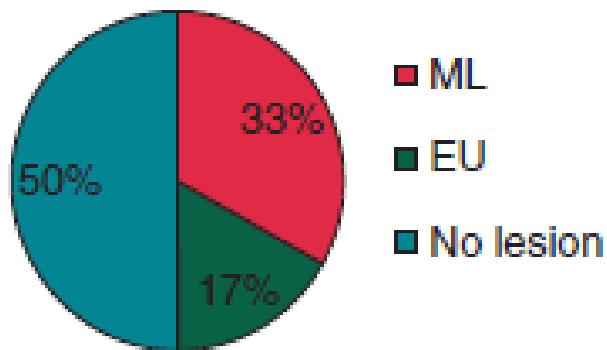
The multipolar irrigated radiofrequency (RF) ablation catheter (nMARQTM) is a novel tool for pulmonary vein isolation (PVI). We investigated the incidence of thermal oesophageal injury (EI) using the nMARQTM for PVI.

Methods and results

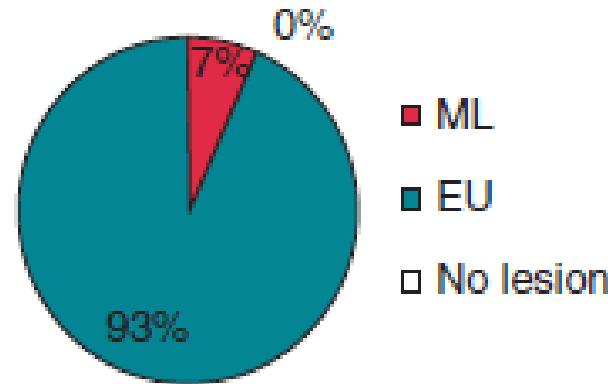
In the initial six patients (Group 1), RF was delivered at the posterior wall with a maximum duration of 60 s and a maximum power (maxP) of 20 W for unipolar ablation, and a maxP of 10 W for the bipolar ablation. In the latter 15 patients (Group 2), RF application was limited at the posterior wall to a maximum duration of 30 s and a maxP of 15 W for unipolar ablation and a max P of 10 W for bipolar ablation. Oesophageal temperature monitoring was performed in all patients and ablation was terminated at a temperature rise $>41^{\circ}\text{C}$. Endoscopy was carried out within 2 days post-ablation. Pulmonary vein isolation was performed during sinus rhythm and was successfully achieved in 83 of 84 PVs except the septal inferior vein in one patient. Charring was seen in 3 of 21 (14.3%) patients without any evidence of embolism. Phrenic nerve palsy occurred in one patient. Endoscopy revealed severe EI in 3 of 6 (50%) patients in Group 1 and in 1 of 15 patients (6.7%) in Group 2. Procedure times between Groups 1 and 2 were similar (228.3 ± 60.2 min vs. 221.3 ± 51.8 min; $P = 0.79$).

Conclusion

An unexpectedly high incidence of thermal EI was noted following PVI using the nMARQTM with the initial ablation protocol. However, the incidence of thermal EI can be significantly reduced with limited power and RF application time at the posterior left atrium.


GRUP I :6 HASTA. POSTERİYOR DUVARA UNİPOLAR 20 W, 60 SN....

GRUP II: 15 HASTA, UNİPOLAR 15 W, 30 SN.

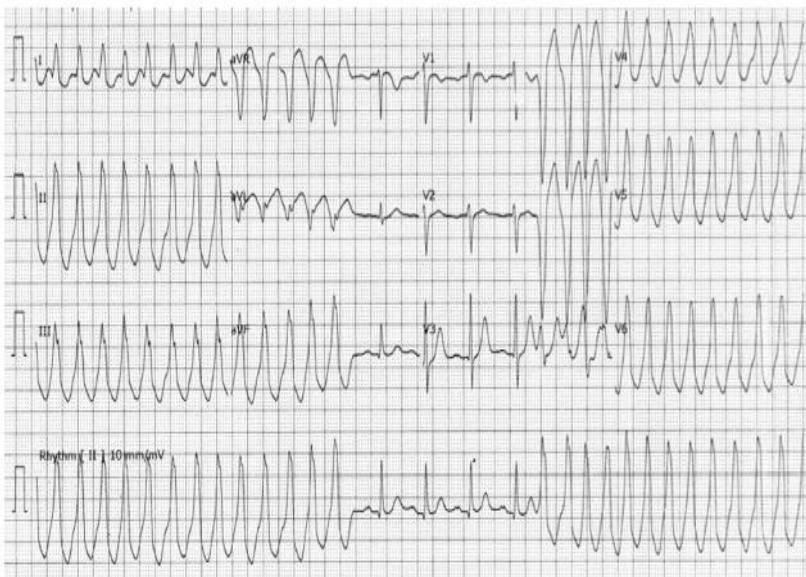

Modified energy settings are mandatory to minimize oesophageal injury using the novel multipolar irrigated radiofrequency ablation catheter for pulmonary vein isolation

Andreas Rillig^{1*}, Tina Lin¹, Andre Burchard², Masashi Kamioka¹, Christian Heeger¹, Hisaki Makimoto¹, Andreas Metzner¹, Erik Wissner¹, Peter Wohlmuth³, Feifan Ouyang¹, Karl-Heinz Kuck¹, and Roland Richard Tilz¹

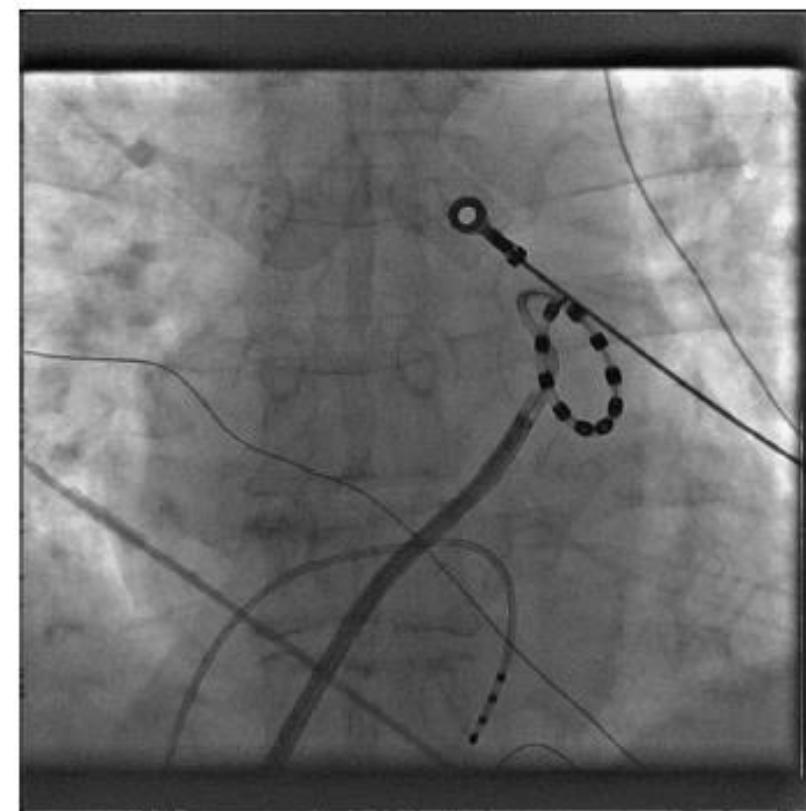
Group 1 ($n=6$)

Group 2 ($n=15$)

Figure 2 Incidence of EI in the different ablation groups. (A) Incidence of EI, ML and EU in patients of nMARQTM Group 1. (B) Incidence of EI, ML and EU in patients of nMARQTM Group 2.



nMARQ'nun Başka Endikasyonlarda Kullanımı


Ablation of right ventricular outflow tract tachycardia using a novel multipolar irrigated ablation catheter (nMARQ)

Jiun Tuan, MBChB, MD, MRCP,* G. André Ng, MBChB, PhD, FRCP(Glasg), FRCP, FESC*†‡

From the *Department of Cardiology, †Cardiology Group, Department of Cardiovascular Sciences, University of Leicester and ‡Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, United Kingdom.

Twelve-lead electrocardiogram showing repetitive monomorphic ventricular tachycardia consistent with a right ventricular outflow tract origin.

Figure 2 Fluoroscopic image of the nMARQ catheter deployed via the DIREX sheath at the right ventricular outflow tract.